1050

Palladium-catalyzed Direct C-H Bond Arylation of Simple Arenes with Aryltrimethylsilanes

Kenji Funaki,¹ Hiroshi Kawai,¹ Tetsuo Sato,^{1,2} and Shuichi Oi^{*1,2}

¹Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8579

²Environment Conservation Research Institute, Tohoku University,

6-6-11 Aramaki-Aoba, Aoba-ku, Sendai, Mivagi 980-8579

(Received July 4, 2011; CL-110568; E-mail: oishu@aporg.che.tohoku.ac.jp)

Direct C–H bond arylation of arenes with aryltrimethylsilanes catalyzed by $PdCl_2$ in the presence of $CuCl_2$ as an oxidant has been developed. In addition to the role as the oxidant, $CuCl_2$ is found to be necessary for the selective crosscoupling reaction.

Biaryl structures are very important units in fine chemicals, such as organic electronic materials, pharmaceuticals, and agrochemicals. The cross-coupling reactions of various arylmetal reagents with aryl halides catalyzed by nickel or palladium have been widely utilized for the biaryl synthesis.^{1,2} In recent years, transition-metal-catalyzed direct C–H bond arylation has attracted significant attention as an efficient and useful method for biaryl synthesis.³ There have been many studies of direct arylation of highly electron-rich heteroaromatic compounds⁴ and arenes involving nitrogen- or oxygen-based directing groups.⁵ In contrast, the direct arylation of simple aromatic hydrocarbons, such as naphthalene and phenanthrene, has been less studied.⁶

In the previous work, we reported the direct C-H bond arylation of simple arenes with aryltin trichlorides in the presence of a catalytic amount of Pd(II) salt and stoichiometric amount of CuCl₂.^{6b} The reaction mechanism is proposed to involve a highly electrophilic arylpalladium intermediate which would easily react with arenes via electrophilic substitution. Since aryltin trichlorides are difficult to handle and highly toxic, we set out to develop more practical direct C-H bond arylation using arylsilicon compounds, which are easy to handle, show low toxicity, and are easily available, as alternative arylmetal reagents. Herein, we report that aryltrimethylsilanes successfully reacted with simple arenes to give the corresponding crosscoupling products in the presence of palladium catalyst and CuCl₂ as the oxidant and activator of the catalyst. To the best of our knowledge, there has been no example of the direct C-H bond arylation using aryltrialkylsilanes.⁷

At first, the reactions of naphthalene (0.5 mmol) with phenylsilicon reagents (1.0 mmol) were examined using PdCl₂ (5 mol %, 0.025 mmol) and oxidants (2.0 mmol) in 1,2-dichloroethane (1,2-DCE, 0.5 mL) at 80 °C for 16 h (Table 1). After the screening, desired products **2a** and **3a** were obtained in moderate yields by the use of PhSiMe₃ (**1a**) and CuCl₂ (Entry 1). When the amount of **1a** was increased to 2.0 mmol, the total yield of the cross-coupling products was increased to 59% (Entry 2). In the case of phenylsilanes with bulky alkyl groups on the silicon, the yields of the coupling products were decreased considerably (Entries 3 and 4). The use of phenylalkoxysilanes, which are known to be good reagents for coupling reactions,⁸ decreased the yields of **2a** and **3a** (Entries 5–7). The reaction of PhSiCl₃
 Table 1. Direct C-H bond arylation of naphthalene with phenylsilicon reagents^a

PdCl ₂ 5 mol% oxidant 2.0 mmol										
1,2-DCE 0.5 mL 80 °C. 16 h										
Ph Ph Ph										
+ Ph-Ph										
		2a		3a		4				
Entry	PhSiR ₃	Oxidant	Yield/% ^b							
			2a ^c	$(\alpha:\beta)$	3a ^c	4 ^d				
1	PhSiMe ₃ (1a)	CuCl ₂	38	(87:13)	7	0				
2 ^e	1a	CuCl ₂	35	(89:11)	24	12				
3	PhSiEt ₃	CuCl ₂	30	(83:17)	0	3				
4	PhSii-Pr3	CuCl ₂	0		0	0				
5	PhSiMe ₂ (OEt)	CuCl ₂	23	(83:17)	0	31				
6	PhSiMe(OMe) ₂	CuCl ₂	16	(81:19)	0	1				
7	PhSi(OMe) ₃	CuCl ₂	4	(100:0)	0	0				
8	PhSiCl ₃	CuCl ₂	0		0	0				
9	1a	Cu(OAc) ₂	2	(79:21)	0	1				
10	1a	CuSO ₄	6	(94:6)	0	0				
11	1a	CuF ₂	4	(88:12)	0	0				
12	1a	CuBr ₂	0		0	1				
13	1a	none	0		0	0				
14 ^f	1a	CuCl ₂	0		0	0				

^aReaction conditions: Naphthalene (0.5 mmol), phenylsilicon reagent (1.0 mmol), PdCl₂ (0.025 mmol), and oxidant (2.0 mmol) in 1,2-DCE (0.5 mL) at 80 °C for 16 h. ^bDetermined by GC. ^cBased on naphthalene. ^dBased on phenylsilicon reagent. ^e2.0 mmol of PhSiMe₃ was used. ^fReaction without PdCl₂.

did not proceed in the present catalytic system (Entry 8). Among the several oxidants examined, CuCl₂ showed the best result (Entries 9–12). In addition, the reaction without the oxidant did not proceed at all (Entry 13). The use of other palladium catalysts, such as Pd(OAc)₂, [PdCl₂(MeCN)₂], [PdCl₂(PhCN)₂], [PdCl₂(cod)], and [Pd₂(dba)₃], decreased the yield of the crosscoupling product (4–26% yield) and increased the yield of biphenyl (4) (30–81% yield). Palladium complexes with electrondonating ligands, such as [PdCl₂(PPh₃)₂] and [PdCl₂(bpy)], did not give any coupling products. As a control experiment, the reaction without palladium catalyst did not proceed (Entry 14). The predominant formation of the α -coupling product strongly suggests that the reaction pathway involves an electrophilic substitution on the naphthalene ring.

Scheme 1. Direct C–H bond arylation of several arenes with aryltrimethylsilanes.

Scheme 1 shows the results of the direct arylation of several arenes with various aryltrimethylsilanes under the optimized reaction conditions (Table 1, Entry 2). The reaction of fluoranthene with 1a afforded mono- and diphenylated products in 48% (2b, C2:C3 = 8:92) and 46% yield (3b, C4:C5 = 80:20), respectively. Phenylation of pyrene gave 4-phenylpyrene (2c) in 34% yield and diphenylated pyrene 3c in 14% yield (C9:C10 = 45:55). The reactions of phenanthrene with various aryltrimethylsilanes having both electron-donating and -withdrawing groups at their 4-positions gave the corresponding 9-arylphenanthrenes 2d, 2e, and 2g-2k in 45 to 81% yields. A clear correlation between the electronic properties of the aryltrimethylsilanes and the product yields was not observed. It is noted that 4-halogenated phenyltrimethylsilanes gave halogen-substituted products 2i-2k, which can be used for further coupling reactions at the halogen substituents. The reaction using sterically hindered o-tolyltrimethylsilane gave the product **2f** in a low yield of 15%.¹³

To clarify the role of CuCl₂, effect of the amount of CuCl₂ was then examined in the reaction of naphthalene (0.5 mmol) with 1a (1.0 mmol) using $PdCl_2$ (0.10 mmol) in 1,2-DCE (1.0 mL) at 80 °C (Table 2). The reactions were carried out for 3 h to form only monophenylated product 2a. The reaction without CuCl₂ did not give any coupling products, because of insolubility of PdCl₂ (Entry 1). Thus, the use of soluble [PdCl₂(MeCN)₂] without CuCl₂ gave only biphenyl (4) as the homocoupling product of 1a (Entry 2). The reaction using PdCl₂ with 1.0 mmol of CuCl₂ afforded the cross-coupling product 2a together with almost the same amount of 4 (Entry 3). On the other hand, the use of [PdCl₂(MeCN)₂] with 1.0 mmol of CuCl₂ gave 4 predominantly (Entry 4). Addition of larger amounts of CuCl₂ to PdCl₂ catalyst then resulted in the preferential formation of 2a (Entries 5 and 6). These results show that the amount of CuCl₂ affects the reaction selectivity between crosscoupling and homocoupling reactions. It is reasonable to

Table 2. Investigation of the effect of CuCl₂

0.5 mm	+ 1a	PdCl ₂ CuCl ₂ 1,2-DC 80°	0.1 mmol 2 x mmol CE 1.0 mL °C, 3 h	Ph + 2a	Ph-Ph 4
Entry	CuCla r/m	mol	mmol by GC		2a·4
Lifting			2a	4	24.7
1	0		0	0	
2 ^a	0		0	0.071	0:1
3	1.0		0.044	0.040	1.1:1
4 ^a	1.0		0.015	0.40	1:27
5	2.0		0.049	0.005	10:1
6	3.0		0.074	0.003	25:1

^a[PdCl₂(MeCN)₂] (0.1 mmol) was used instead of PdCl₂.

Scheme 2. Kinetic isotope effect on the reaction of naphthalene with 1a.

Scheme 3. A presumed reaction pathway.

suppose that this reaction selectivity is caused by the formation of polymetallic Pd–Cu clusters.^{9,10} It is also possible that CuCl₂ oxidizes a Pd(II) intermediate to a Pd(III) or Pd(IV) species.¹¹ Acetonitrile ligands on the palladium catalyst would prevent such interactions between palladium and copper.

Kinetic isotope effect was also investigated by the competitive reaction between naphthalene and naphthalene- D_8 with **1a** (Scheme 2). The $k_{\rm H}/k_{\rm D}$ ratio was determined to be 1.16. This suggests that the C–H bond cleavage of naphthalene by a palladium intermediate proceeds via the electrophilic substitution mechanism.

A presumed reaction pathway is shown in Scheme 3. Electrophilic transmetalation of $PdCl_2$ with $ArSiMe_3$ at the *ipso*-Si position¹² generates an arylpalladium intermediate in the presence of $CuCl_2$ (i). Aromatic electrophilic substitution of Ar'-H with the arylpalladium intermediate occurs to form a diarylpalladium intermediate (ii). The exact structure of the arylpalladium intermediate has not yet been clear, the interaction with $CuCl_2$ would be crucial in this step. Reductive elimination

from the diarylpalladium species gives the cross-coupling products (iii). Finally, oxidation of palladium species by $CuCl_2$ regenerates $PdCl_2$ (iv).

In summary, palladium-catalyzed direct C–H bond arylation of simple arenes with aryltrimethylsilanes is described. In this reaction, $CuCl_2$ is essential to obtain the desired cross-coupling products in high selectivity. Further studies to expand the substrate scope and their applications, as well as the investigations for the reaction mechanism are now in progress.

This work was supported in part by a Grant-in-Aid for Scientific Research on Innovative Areas "Molecular Activation Directed toward Straightforward Synthesis" from MEXT, Japan and by a commissioned project conducted by New Energy and Industrial Technology Development Organization (NEDO).

This paper is in celebration of the 2010 Nobel Prize awarded to Professors Richard F. Heck, Akira Suzuki, and Ei-ichi Negishi.

References and Notes

1052

- a) Cross-Coupling Reactions: A Practical Guide in Topics in Current Chemistry, ed. by N. Miyaura, Springer-Verlag, Berlin, 2002, Vol. 219. doi:10.1007/3-540-45313-X. b) Metal-Catalyzed Cross-Coupling Reactions, 2nd ed., ed. by A. de Meijere, F. Diederich, Wiley-VCH, Weinheim, 2004.
- Reviews: a) M. Kumada, *Pure Appl. Chem.* **1980**, *52*, 669. b)
 E. Negishi, *Acc. Chem. Res.* **1982**, *15*, 340. c) N. Miyaura,
 A. Suzuki, *Chem. Rev.* **1995**, *95*, 2457. d) T. Hiyama, Y.
 Hatanaka, *Pure Appl. Chem.* **1994**, *66*, 1471. e) J. K. Stille,
 Angew. Chem., Int. Ed. Engl. **1986**, *25*, 508.
- Reviews: a) T. Satoh, M. Miura, Chem. Lett. 2007, 36, 200.
 b) I. V. Seregin, V. Gevorgyan, Chem. Soc. Rev. 2007, 36, 1173. c) D. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174. d) F. Kakiuchi, T. Kochi, Synthesis 2008, 3013. e) O. Daugulis, H.-Q. Do, D. Shabashov, Acc. Chem. Res. 2009, 42, 1074. f) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem., Int. Ed. 2009, 48, 5094. g) L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem., Int. Ed. 2009, 48, 9792. h) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147. i) C.-L. Sun, B.-J. Li, Z.-J. Shi, Chem. Commun. 2010, 46, 677. j) C. Liu, H. Zhang, W. Shi, A. Lei, Chem. Rev. 2011, 111, 1780.
- 4 a) S.-D. Yang, C.-L. Sun, Z. Fang, B.-J. Li, Y.-Z. Li, Z.-J. Shi, *Angew. Chem., Int. Ed.* 2008, 47, 1473. b) L. Ackermann, R. Vicente, *Org. Lett.* 2009, 11, 4922. c) B. Liégault, D. Lapointe, L. Caron, A. Vlassova, K. Fagnou, *J. Org. Chem.* 2009, 74, 1826. d) K. Ueda, S. Yanagisawa, J. Yamaguchi, K. Itami, *Angew. Chem., Int. Ed.* 2010, 49,

8946. e) J. Huang, J. Chan, Y. Chen, C. J. Borths, K. D. Baucom, R. D. Larsen, M. M. Faul, *J. Am. Chem. Soc.* 2010, *132*, 3674. f) F. Shibahara, E. Yamaguchi, T. Murai, *J. Org. Chem.* 2011, *76*, 2680.

- 5 a) Z. Shi, B. Li, X. Wan, J. Cheng, Z. Fang, B. Cao, C. Qin, Y. Wang, *Angew. Chem., Int. Ed.* 2007, *46*, 5554. b) D.-H.
 Wang, T.-S. Mei, J.-Q. Yu, *J. Am. Chem. Soc.* 2008, *130*, 17676. c) J.-H. Chu, S.-L. Tsai, M.-J. Wu, *Synthesis* 2009, 3757. d) V. S. Thirunavukkarasu, K. Parthasarathy, C.-H.
 Cheng, *Chem.—Eur. J.* 2010, *16*, 1436. e) G.-W. Wang, T.-T.
 Yuan, D.-D. Li, *Angew. Chem., Int. Ed.* 2011, *50*, 1380.
- 6 a) G. Dyker, S. Borowski, J. Heiermann, J. Körning, K. Opwis, G. Henkel, M. Köckerling, *J. Organomet. Chem.* 2000, 606, 108. b) H. Kawai, Y. Kobayashi, S. Oi, Y. Inoue, *Chem. Commun.* 2008, 1464. c) C. Qin, W. Lu, *J. Org. Chem.* 2008, 73, 7424.
- 7 a) S. Yang, B. Li, X. Wan, Z. Shi, J. Am. Chem. Soc. 2007, 129, 6066. b) H. Zhou, Y.-H. Xu, W.-J. Chung, T.-P. Loh, Angew. Chem., Int. Ed. 2009, 48, 5355. c) H. Hachiya, K. Hirano, T. Satoh, M. Miura, Angew. Chem., Int. Ed. 2010, 49, 2202. d) Z. Liang, B. Yao, Y. Zhang, Org. Lett. 2010, 12, 3185.
- 8 a) M. E. Mowery, P. DeShong, Org. Lett. 1999, 1, 2137. b)
 H. M. Lee, S. P. Nolan, Org. Lett. 2000, 2, 2053. c) C. Wolf,
 R. Lerebours, Org. Lett. 2004, 6, 1147. d) L. Zhang, J. Qing,
 P. Yang, J. Wu, Org. Lett. 2008, 10, 4971.
- 9 a) D. R. Stuart, E. Villemure, K. Fagnou, *J. Am. Chem. Soc.* 2007, *129*, 12072. b) S. Potavathri, A. S. Dumas, T. A. Dwight, G. R. Naumiec, J. M. Hammann, B. DeBoef, *Tetrahedron Lett.* 2008, *49*, 4050.
- 10 a) T. Hosokawa, M. Takano, S.-I. Murahashi, J. Am. Chem. Soc. 1996, 118, 3990. b) T. Hosokawa, T. Nomura, S.-I. Murahashi, J. Organomet. Chem. 1998, 551, 387.
- a) B. D. Dangel, J. A. Johnson, D. Sames, *J. Am. Chem. Soc.*2001, *123*, 8149. b) D. Kalyani, A. R. Dick, W. Q. Anani, M. S. Sanford, *Org. Lett.* 2006, *8*, 2523. c) X. Wan, Z. Ma, B. Li, K. Zhang, S. Cao, S. Zhang, Z. Shi, *J. Am. Chem. Soc.*2006, *128*, 7416. d) M. Wasa, J.-Q. Yu, *J. Am. Chem. Soc.*2008, *130*, 14058. e) R. B. Bedford, J. U. Engelhart, M. F. Haddow, C. J. Mitchell, R. L. Webster, *Dalton Trans.* 2010, *39*, 10464.
- 12 a) C. Eaborn, J. Organomet. Chem. 1975, 100, 43. b) J.-M. Valk, J. Boersma, G. van Koten, J. Organomet. Chem. 1994, 483, 213. c) P. Steenwinkel, R. A. Gossage, T. Maunula, D. M. Grove, G. van Koten, Chem.—Eur. J. 1998, 4, 763. d) W. Rauf, J. M. Brown, Synlett 2009, 3103. e) W. Rauf, A. L. Thompson, J. M. Brown, Chem. Commun. 2009, 3874.
- 13 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/ index.html.

www.csj.jp/journals/chem-lett/